Die Energiewende und das Smart Grid (1)

Joachim Dorfmüller 1935-2018

Stefan Herkert

Stuttgart - Tübingen, Februar 2021
English Abstract and Calculations

Abstract

DC-Power Hub for connection of 4-6 PV Strings(101) with Battery (102), Second Storage (103) and DC-Grid (104). Optional plugs for inverter (105) for AC-Grid (106) interactivity.

Best designed for 2 S PV with 50Volt Battery. This means 2 panels serial (total of 8-12 PV-Panels) each string capable of 10-15 Amps.
$50 . .60 \mathrm{Volt} * 6$ Strings*10..15Amps $=3.000 \ldots 5.400 \mathrm{Watt}$.

Single fault safety. Galvanic circuit breaker. Analog Intelligence. Micro Open Repair. Safety Voltage (below 60V). Super long life design (see details) for $50 . .83$ years Dorfmüller Everlife. Completely Open Source. No Software.

Single Best Solution for Majorit of the people.

Efficiency@10Amps: >98\% Efficiency @15Amps: >97\%
Raw Material costs: below $\$ 200$

Short Introduction

Replacing Coal takes about 10TW Solar +10 TWhB Battery which is an increase of at least 100 times to actual Power and Capacity and it costs at least 10 Trillion Dollars which is about 2.5 times US Federal Budget or 28 times German Bundeshaushalt

One option especially in regard of big cities, that we all love, are GIGA Projects that faciliate installation and maintenance significantly and thus can afford to run with comparetively short lived highvoltage inverters like SMA Tripower $10 \mathrm{~kW}, \$ 2.000$.

10 TW - Possibilities

Neither high voltage nor relatively short lifetime are an option if you want to achieve widspread swarm topology with hundreds of millions of small plants. There you need a concept like shown in this calculation: safety voltage, low cost, long life - like really long life- : we are aiming at 50-83 years Everlife Design, and simplicity including micro open repair for local maintenance and true empowerment.

DC-Source + DC-Store $=$ DC-Comb

Most simple solution - Single Best Result for a 6TW Project.

Check it out - do the math - its completely open.

Part 1. Calculations Power Circuit

Components: Costs - Efficiency - Lifetime

1.30 DIODES - SCHOTTKY

Double Diode used for one String of PV, 2x30Amp, 100Volt

https://de.farnell.com/c/gleichrichter-transistoren-thyristoren-dioden/dioden/schottky-dioden/schottky-
gleichrichterdioden?periodische-sperrspannung-vrrm-max-=100v\&durchlassstrom-mittlerer-if-av-=30a

COST:	below $6 * \$ 1=\$ 6$	
Efficiency:	$6 * 10 \mathrm{Amps}^{*} 0.65 \mathrm{~V}=$	$6 * 6.5 \mathrm{Watt}$
	$6 * 15 \mathrm{Amps}^{*} 0.70 \mathrm{~V}=$	$6 * 10.5 \mathrm{Watt}$
Rate of Loss:	$40 \mathrm{Watt} / 3.300 \mathrm{Watt}$ Total	$->1.21 \%$
	$66 \mathrm{Watt} / 4.950 \mathrm{Watt}$ Total	$->1.33 \%$

Calculation with 55Volt Battery Voltage @6*10Amps rated power and at $6 * 15 \mathrm{Amps}$ peak power.

Diodes are most sensitive device due to high power consumption. Need good cooling.

1.31-33 SWITCHES

N-Channel Mosfet, 80-100Volt, Rdson about 5-6mOhm possible

https://de.farnell.com/c/gleichrichter-transistoren-thyristoren-dioden/leistungs-mosfet/einfachemosfet?wandlerpolaritat $=n$-kanal\&drain-source-spannung-vds $=100 \mathrm{v}$

NXP Semiconductors
PSMN5R6-100PS
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Symbol } & \text { Parameter } & \text { Conditions } & & \text { Min } & \text { Max } & \text { Unit } \\ \hline \mathrm{I}_{\mathrm{DM}} & \text { peak drain current } & \text { pulsed; } \mathrm{t}_{\mathrm{t}} \leq 10 \mu \mathrm{~s} ; \mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} \text {; Fig. 3 }\end{array}\right)$

COST:	about $6 * \$ 1=\$ 6$	
Efficiency:	$6^{*} 10^{2} \mathrm{Amps}^{2 *} 6 \mathrm{mOhms}=$	$6 * 0.6 \mathrm{Watt}$
	$6^{*} 15^{2} \mathrm{Amps}^{2 *} 7 \mathrm{mOhms}=$	$6 * 1.5 \mathrm{Watt}$
Rate of Loss:	$3.6 \mathrm{Watt} / 3.300 \mathrm{Watt} \mathrm{Total}$	$->0.11 \%$
	$9 W \mathrm{Watt} / 4.950 \mathrm{Watt}$ Total	$->0.18 \%$

Calculation with 55Volt Battery Voltage @6*10Amps rated power and at 6*15Amps peak power.

Way overrated in comparison to Diodes. No HF-Switching- no switching losses - no aging - Dorfmüller Everlife Design.

1.34 THE SWITCH

Normally you would use Smartmat as circuit breaker (35) in case of emergency. While this is not yet available still we do not want to use expensive and heavy relais with $5-8 \mathrm{Watt}$ standby losses over decades! Just for that 1 moment where there is a fault that escapes the solid analog intelligence.

So we use a standard circuit breaker (35) and in the one case of emergency we shortcircuit the battery with a SWITCH (34) - and see what happens...

https://de.farnell.com/w/c/gleichrichter-transistoren-thyristoren-dioden/leistungs-mosfet/einfache-mosfet?wandlerpolaritat=$=$-kanal\&drain-source-spannung-vds=100v\&verlustleistung-pd=375w

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)				
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		$\mathrm{V}_{\text {DS }}$	100	v
Gat--source voltage		$\mathrm{V}_{\text {GS }}$	± 20	
Continuous drain current ($\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$)	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	1 D	$150{ }^{\text {d }}$	A
	$\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$		$150{ }^{\text {d }}$	
Pulsed drain current ($\mathbf{t}=100 \mu \mathrm{~s}$)		IDM	500	
Avalanche current		las	60	
Single avalanche energy ${ }^{\text {a }}$	$\mathrm{L}=0.1 \mathrm{mH}$	EAS	180	mJ
Maximum power dissipation ${ }^{\text {a }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	${ }^{3755^{\text {b }}}$	w
	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		$125^{\text {b }}$	
Operating junction and storage temperature range		$\mathrm{T}_{\mathrm{J}, \mathrm{T}}$	-55 to +175	${ }^{\circ} \mathrm{C}$

https://de.farnell.com/w/c/gleichrichter-transistoren-thyristoren-dioden/leistungs-mosfet/einfache-mosfet?wandlerpolaritat=n-kanal\&drain-source-spannung-vds=100v\&dauer-drainstrom-id=300a\&verlustleistung$\mathrm{pd}=375 \mathrm{w}$

$1 \underset{\text { at }}{\text { Maximum ratings }}$ Mas

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Continuous drain current	10	\|-		$\begin{aligned} & 300 \\ & 243 \\ & 32 \end{aligned}$	A	
Pulsed drain current ${ }^{\text {2 }}$	$I_{\text {d,pulse }}$	-		1200	A	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$
Avalanche energy, single pulse ${ }^{3}$	$E_{\text {AS }}$	-		775	mJ	$10=150 \mathrm{~A}, R_{\text {cs }}=25 \Omega$
Gate source voltage	VGs	-20		20	\checkmark	-
Power dissipation	$P_{\text {tot }}$	-		375	w	$T_{\mathrm{c}}=25^{\circ} \mathrm{C}$
Operating and storage temperature	$T_{\text {j }}, T_{\text {stg }}$	-55		175	${ }^{\circ} \mathrm{C}$	IEC climatic category; DIN IEC 68-1: 55/175/56

To trigger a circuit breaker of 63Amps you would need 300..600Amps. Total Power is: 60Volt*300..600Amps=18..36kWatt

TO220 easier to replace after 'onetime-switching', when put into a connector.

Maybe putting a resistor in circuit who takes the load and controls current to $300 . .600 \mathrm{Amps}$.

https://www.doepke.de/uploads/tx_doepkeproducts/diagramm/doepke_09917019_char_bcd_63a_dia_ml.jpg

1.35 CIRCUIT BREAKER

Produkte für 'dc automat'
BMO15250-2

DC-Sicherungsautomat,
Kennlinie C, 50A, 2-polig,
10kA
EUR 19,54/1 Stk

DC-Sicherungsautomat,
Kennlinie C, 40A, 2-polig,
10kA

EUR 14,65/1 Stk
https://www.schrack-
echnik.de/shop//catalogsearch/result?q=dctautomat\&cat=8fq=\x\'facets\"\%3A\x\"schrack.stromstaerke\"\%3A\[\"40A\"\%2C\% $250 A \% 22 \% 50 \% 2 C \% 22$ schrack type\%22\%3A\%58\%22DC.
Sicherungsautomat\%22\%50\%2c\%22schrack pole\%22\%3A\%58\%222\%22\%5D\%7D\%2C\%22 general filters\%22\%3A\%78\%7D\%7D
Providing i> and i>> Protection - charge and discharge. Variation as Smartmat would add u>> and u<< redundancy at low extra cost and completely standalone.

COST:
about \$15 .. 20
(decreasing massively with increasing volume of future dcapplications. Down to $\$ 5$ possible like ac circuit breaker 16Amp)

Efficiency:	$50^{2} \mathrm{Amps}^{2 *} 1 \mathrm{mOhms}=$	2.5 Watt
Rate of Loss:	$2.5 \mathrm{Watt} / 2.750 \mathrm{Watt}$ Total	$->0.09 \%$

Estimated resistance of 1 mOhm

Calculation with 55Volt Battery Voltage @50Amps max charge current. Remaining current - 25-40 Amps - is for second store (103) e.g. waterpumps, heating or solar fuels (still to be developped) or immidiate use in dc comb (104).

Solid Device. Extra Ionglife.

1.36 SHUNT

https://de.farnell.com/w/search/pr//ergebnisse?st=widerstand\ 0.005ohm\&nennleistung=5w
Measuring needs to be precise only near circuit breaker tripping current. We use 1 Shunt per 10Amps: 10Amps* $5 \mathrm{mOhm}=50 \mathrm{mVolt}$

We do not have eny EMI - elektromagnetic interference because we do have no hf-switching anywhere: neigher powerunit nor controlunit. The little switching that we do can be done very slow and emi free.

Thus our little 50mVolt Signal does not get interfered. The choice is between THT technology and SMD.

COST:	about $5 * \$ 1=\$ 5$	
Efficiency:	$5^{*} 10^{2} \mathrm{Amps}^{2}{ }^{*} 5 \mathrm{mOhms}=$	2.5 Watt
Rate of Loss:	$2.5 \mathrm{Watt} / 2.750 \mathrm{Watt}$ Total	$->0.09 \%$

1.1-20 POWERPLUGS - max current 15..25Amps

The choice is between simple devices, which require more cable manufacturing or smart plug-in devices which are fine with simple isolated cables.

PCB terminal block; $4 \mathrm{~mm}^{2}$; Pin spacing 5 mm ; 1-pole; Push-in CAGE CLAMP®; $4,00 \mathrm{~mm}^{2}$; gray

https://www.wago.com/us/pcb-interconnect/pcb-terminal-block/p/2624-3101

Current-Carrying Capacity Curve

Pin spacing: $5 \mathrm{~mm} /$ Conductor cross-section: $4 \mathrm{~mm}^{2} \mathrm{ff}$-st" Based on: EN 60512-5-2 / Reduction factor: 1

Plugs are well oversized for 15 Amps and desired maximum Temperature of $>72^{\circ} \mathrm{C}$. Longlife Design

Cheaper variation. Usually designed for 15 Amps.

COST:	about $20^{*} \$ 1=\$ 20$
Efficiency:	$20 * 10^{2} \mathrm{Amps}^{2 *} 1.25 \mathrm{mOhms}=2.5 \mathrm{Watt}$
Rate of Loss:	$2.5 \mathrm{Watt} / 2.750 \mathrm{Watt}$ Total $\quad->0.09 \%$

Estimated resistance of 1.25 mOhm

```
\rho\approx1,8\cdot1\mp@subsup{0}{}{-8}8\textrm{mm},\mp@subsup{E}{}{=}\approx5,6\cdot1\mp@subsup{0}{}{10}\textrm{Pa}
\rho\approx1,
R=\frac{1}{A}=0,1\textrm{m}\Omega
```

https://de.wikipedia.org/wiki/Kontaktwiderstand

Die Energiewende und das Smart Grid (1) - Joachim Dorfmüller 1935-2018

1.21-24 POWERCONNECTORS - max current 50-63Amps

One very powerful connector premium quality each.

REDCUBE PRESS-FIT

The current rating of REDCUBE PRESS-FIT is impressive. With the same ampacity, REDCUBE PRESS-FIT has the lowest heat development compared to other parts that supply power for PCBs.

Ampacity up to 500 A

Applications
High current Wire-to-Board \& Board-to-Board Mounting of copper bars - Angled assembling of cable, PCB and housing Mounting of IGBT modules
https://www.we-online.com/web/en/electronic components/produkte $\mathrm{pb} / \mathrm{produktinnovationen/redcube.php}$

Or two moderate powerful connectors for each connection. Oversizing again 2times for long life performance (overheated connector is very bad for micro open repair: difficult to desolder and exchange, needs special equipment. Micro open repair shall be open to as much as possible)

https://ihiconnectors.com/IHI-THT-through-hole-technology-PCB-terminals.htmI

COST: about \$5 total

Efficiency $50^{2} \mathrm{Amps}^{2 *} 1 \mathrm{mOhms}=$ 2.5Watt

Rate of Loss: \quad 2.5Watt/2.750Watt Total $\quad->0.09 \%$

Estimated resistance of 1 mOhm

Calculation with 55Volt Battery Voltage @50Amps max charge current. Remaining current - 25-40 Amps - is for second store (103) e.g. waterpumps, heating or solar fuels (still to be developped) or immidiate use in dc comb (104).

Efficiency Total - above 98\%

Diodes
 1.2 .. 1.4\%
 Fet
 0.1.. 0.2\%

Contacts
adding several 0.1\%

PCB Power Components Total - some \$50 to \$60

12 Diodes+Fet \$12

24 Connectors \$24

5 Shunt \$5

1 Circuit Breaker
\$15

2. Additional cost: VISUALIZATION, CASING

Simple Voltmeter 60Volt \$20
Voltmeter 50 mVolt , 2ways would be nice for current
Additional 24 Clamps for easy installation \$24
Wires + Wireconnectors

Aluminium Frame $\$ 8 . .10 / \mathrm{m}$ + Aluminium Plate + Screws $\$ 2$

$$
A S S
$$

Adding another \$100 cost up to \$150 total so far.

Part 2. Calculations Control Circuitry

Simplicity

Lowest Tech has Longest Life

As you can see some comparator IC are all the logic we need. This is super low power consumption. This allows to renounce modern hf switching powerunit and to go back to simple resistor-zener diode powerunit with efficiency of below 20\% - it simply does not matter. More important is simplicity and longlife and micro open repair for understanding and empowerment.

Of course we add a simple transistor to power unit - but it is still the same voltage divider principle with zenerdiode.

Not switching means not causing EMI electro magnetic interference. Only using comparator operating at 12.. 15 Volt but being strong enough for 30 Volt means we are not EMI sensitive considering the solid BAT and PV voltage at the input.

We can drop all EMI circuitry.

We operate at $12 . .15$ Volt generated from 60Volt which means our efficiency of powerunit ist below 25%.

But it does not matter, because our power consumption will be about some few multitudes of 10 mAmps .
(40) compares voltage: battery fully charged?
(41) compares current: too much?

The diodes provide simple OR-link and charge capacitor (42).
(43) sequentially switches secondary stores (32) - this usually stops events $40+41$ voltage or current exceeded and capacitor (42) slowly - like very slowly - discharges. Minutes.
(43) sequentially switches OFF PV Panels (31) if second store cannot absorb the over-energy. Again this will stop event $40+41$ at a certain step and stop the chain.

There is a hysteresis involved in (43). In a newer version this will be achieved in adding a second resistor-capacitor unit after (42). This reduces number of components.

See KICAD Schematic as soon as ready or in the appendix if already finished.
(43) finally would trigger switch (34) but why should this happen? Voltage (40) and Current (41) are the control values and with full disconnection of PV (31) everything should be fine - the events $40+41$ would be set to zero and the required sequentially climbing voltage to trigger the final comparator would never be reached.
(50) detects undervoltage - deepcharge protection
(51) detects overvoltage - overcharge protection

The schematic here shows very simple methods of comparison with zenerdiodes and trigger with diac (52). This might be good for backup and single fault safety with values of 44 Volt and 62 Volt. Additional comparators might do the more precise job at 46 and 60 Volt. Its just showing how little and simple components might be used.
(60) is for DC-Channels (33). They stop at undervoltage, say 48 Volt.

Q: Can you patent circuitry as simple as that?
A: if it is possible to prove that this approach is the single best energy solution with PV and BAT in cost*life*aftermath- by factor $3 . .10$ - in comparison with all existing solutions available on market - with global players of billion dollar calibre -

Then: yes. They all could have done it - easily. It's simple as child. But as they didn't they are best proof that this approach is ingenious.

2.1 Components and Power Consumption

Comparator - we use one type several times: e.g. 2902D

Low Power: $<1 \mathrm{~mA}$ * 4-5 comparators $=4-5 \mathrm{mAmps}$

Wide Tolerance: 3V.. 32 Volt (EMI Tolerance)

	$\begin{aligned} & \text { EXXAS } \\ & \text { NSTRUMENTS } \end{aligned} \text { LM124, LM124AALL Li }$	LMTRUMENTS LM124, LM124A, LM224, LM224A, LM2902V, LM2902K, LM2902KV, LM2902KAV
LMx24, LMx24x, LMx24xx, LM2902, LM2902x, LM2902xx, LM2902xxx QuadrupleOperational Amplifiers		
1	Features	Applications
	2-kV ESOP Protection for.	Bluray Players and Home Theaters
	- LIM224k, LI224KA	Chemical and Gas Sensors
	- Lмз24k, Lмз34ка	DVD Recorders and Players
	- Lm2902k, Lm2902kV, LM2902KAV	Digital Mutimeter Bench and Systems
	Wide Supply Ranges	Digital Multimeter. Handelelds
	Singe Supply 3 V 103	Field Transmitter Temperature Senso
	(26 V for LM2902)	Motor Contro: AC Induction, Brushed DC,
		Brushess DC, High-Voltage, Low-Voltag
	Low Supply-Current Drain Independent of	- Oscilloscopes
	Supply Vottage 0. 0.8 mA Typical	TV: LCD and Digit
	Common-Mode Input Voltage Range Includes	- Temperature Sensors or Controlers Using
	Low Input Bias and Oftset Parameters	- Moctigh Scales
	Input Offset Voltage: 3 mV Typical A Versions 2 mV Typoical	3 Description
	Input Offsee Current 2 nA Typica	
	Input Bias Current 20 nA Typical	Sency-compensated operational amplifiers that
	A Versions: 15 nA Ty	supply or spilit supply overa wide erange of voltages.

Optocoupler - to switch off PV - there is a potential trouble because the FETs are with Drain on GND and Source on PV-minus.

So we have to shortcircuit Gate-Source with Optocouplers to cut off PV current. These use up most of our power unit current ironically this plays exactly into our hand: because then obviously battery is fully charged, and we have plenty energy to spare, a slight discharge 1..2Watt is welcome and we have no heat issues since our main source of heat (diodes (30) power circuit) are cut off at the same time as pv panels.

Some 1..2mA should do to shut down Mosfet

Electrical Specifications (DC)							
Over recommended ambient temperature at $25^{\circ} \mathrm{C}$ unless otherwise specified.							
Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Note
ForwardVoltage	V_{F}	-	1.2	1.4	V	$\mathrm{I}_{\mathrm{f}}=20 \mathrm{~mA}$	Fig. 6
Reverse Current	I_{R}	-	-	10	μ h	$V_{\mathrm{R}}=5 \mathrm{~V}$	
Terminal Capacitance	$c_{\text {t }}$	-	30	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	
Collector Dark Current	Icfo	-	-	100	nA	$\mathrm{V}_{\mathrm{G}}=488, \mathrm{l}=0 \mathrm{~mA}$	Fig. 12
Collector-Emitter Breakjown Voltage	$\mathrm{BV}_{\text {cto }}$	80	-	-	V	$\mathrm{l}_{\mathrm{c}}=0.5 \mathrm{~mA}, \mathrm{l}_{\mathrm{l}}=0 \mathrm{~mA}$	
Emitter-Collector Breakdown Voltage	$\mathrm{BV}_{\mathrm{Ec} 0}$	7	-	-	v	$\mathrm{l}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{l}_{\mathrm{F}}=0 \mathrm{~mA}$	
Current Transer Ratio	CTR	50	-	600	\%	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=5 \mathrm{~V}$	$\begin{aligned} & \hline \text { CTR=(IC/IF)* } \\ & 100 \% \end{aligned}$
Saturated CTR	CIR(sat)	-	100	-	\%	$\mathrm{I}_{\mathrm{F}}=\mathrm{mA}, \mathrm{V}_{\mathrm{G}}=0.4 \mathrm{~V}$	
Collector-Emitter Saturaion Voltage	$V_{\text {ct }}($ sat $)$	-	-	0.4	V	$\mathrm{l}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=2.4 \mathrm{~mA}$	Fig. 14
Isolation Resistance	R SO	5×10^{10}	1×10^{11}	-	Ω	DC500V, R.H. 40~60\%	
Floating Capacitance	c_{F}	-	0.6	1	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$	
Cut-off Frequency (-3dB)	Fc_{C}	-	80	-	kHz	$\begin{aligned} & V_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=2 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \Omega \end{aligned}$	Fig. 2,19
Response Time (Rise)	t_{5}	-	2	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}, \mathrm{lc}=2 \mathrm{~mA}$,	Fig. 1
Response Time (fall)	${ }_{\text {t }}$	-	3	-	μs	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	
Tum-on Time	t_{0}	-	3	-	$\mu \mathrm{s}$		
Turn-offlime	torf	-	3	-	$\mu \mathrm{s}$		
Turn-ONTime	ton	-	2	-	μ s		Fig. 1,17
Storage Time	Is	-	25	-	μ s	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	
Turn-OFF Time	toff	-	40	-	μs		
Common Mode Rejection Voltage	CMR	-	10	\cdot	kV// ${ }^{\text {s }}$		Fig20

Visualization - takes energy directly from DC Power Circuit: pointer instruments for voltage $0 . .60 \mathrm{Volt}$ or $0 . .15$ Volt with zenerdiode 45Volt inline. Ideal would be pointer instrument two ways for current directly at shunt (36) measuring some 50 mVolt both ways.

Will be updated with KICAD Schematic.

Its still all calcualtions - not tested. Even if buggy the concept is clear, straightforward and shows how to design 50.83 years longlived technology in BASICS.

Electricity is BASIC - the plugins are SPECIAL.
https://www.paypal.com/paypalme/StefanMATH?locale.x=
Thank you so much . 1

Update July 2021

Kicked out Diodes and replaced with circuit breakers to secure reverse current into pv panels. Also eliminates main source of power loss! Efficiency now probably 99\%!

Schematic - done. Only needs some details calculations.

Board - placement and choice of components almost done.

CASE - concept done.

Abbildung 1 - case drawing with eagle. Board, Volmeter and Relais in top row. Circuit Breakers and Connectors in bottom row and accessible for electrician.

Abbildung 2THT Top Side of Board

Abbildung 3 - SMD Bottom Side of Board

Abbildung 4 Example of Case Material (way larger and for different application)

